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Two-layer critical flow over a semi-circular obstruction
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Abstract. Steady, trans-critical flow of a two-fluid system over a semi-circular cylinder on the bottom of a channel is
considered. Each fluid is assumed to be inviscid and incompressible and to flow irrotationally, but the fluids have
different densities, so that one flows on top of the other. Consequently, a sharp interface exists between the fluids,
in addition to a free surface at the top of the upper fluid. Trans-critical flow is investigated, in which waves are
absent from the system, but the upstream and downstream fluid depths differ in each fluid layer. The problem is
formulated using conformal mapping and a system of three integrodifferential equations, and solved numerically
with the aid of Newton's method. The free-surface shape and that of the interface are obtained along with the
Froude numbers in each fluid layer. Results of computation are presented and discussed.

1. Introduction

This paper is concerned with the flow of a system of two fluids in a rectangular channel,
attached to the bottom of which is a semi-circular cylinder mounted at right angles to the
channel side walls. Each fluid is assumed to be ideal, in the sense that it is incompressible
and inviscid and flows irrotationally, and the two fluids differ only with respect to their mass
densities. Consequently, the flow exists in two distinct layers, with a free surface at the top of
the upper fluid and a sharp interface separating the upper fluid from the lower fluid. To the
extent that the flow is assumed ideal, boundary-layer effects are ignored at the channel side
walls and along the bottom; the flow is thus identical in any plane parallel to the channel
walls, and will therefore be considered as two-dimensional henceforth.

It is at once clear that a variety of possible flow situations may exist as physically
admissible outcomes to such an investigation. For example, in the case of a single fluid layer
flowing over a semi-circular obstacle, at least four different flow scenarios are known to be
possible, depending upon the upstream Froude number, which is the ratio of the upstream
fluid phase speed to the speed at which an infinitesimal wave travels. Two of these
possibilities are discussed by Forbes and Schwartz [10] and consist of a slow-speed solution
(Froude number <1) possessing a quiescent region upstream and waves downstream, and a
large-speed solution (Froude number >1) which is symmetrical about the semi-circular
obstacle on the channel bottom and is free from waves. A third possibility has been
discovered by Vanden-Broeck [16], and is similar to the large-speed solutions discussed by
Forbes and Schwartz [10], except that it is apparently a perturbation to a solitary wave,
whereas the solutions of Forbes and Schwartz are perturbations to uniform flow. The fourth
solution possibility is that of 'critical flow' in which there is uniform flow both upstream and
downstream of the obstacle, with sub-critical flow (Froude number <1) upstream and
super-critical flow (Froude number >1) downstream. This flow type is termed 'critical' since
the solution of the problem using one-dimensional hydraulic theory requires that the local
Froude number become exactly equal to one at the obstacle (Henderson [11]). A generaliza-
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tion of this flow type to the situation in which a two-fluid system flows over an obstacle will
be discussed in the present paper.

In the case of a single fluid layer flowing over an obstacle, the 'critical flow' possibility
described above differs from the other types of flow in that the upstream fluid depth and
phase speed cannot be specified independently in advance. A simple reason for this is
provided by one-dimensional hydraulic theory, which requires that the local Froude number
be exactly one at the obstacle, leading to an over-determined problem if the upstream
Froude number were also specified. In some sense, then, the flow is 'controlled' by the
obstacle. Several attempts have been made to compute such flows numerically, as the
solution to the exact non-linear equations of inviscid free-surface hydrodynamics. For
example, Aitchison [1] and Bettess and Bettess [5] used variable finite-element methods to
obtain the unknown surface shape, although their techniques suffer from the drawback that
the condition of uniform flow far upstream is not stipulated in advance. A more recent
numerical solution which overcomes this difficulty has been given by Forbes [9], and
Vanden-Broeck and Keller [17] consider this general class of flows which are controlled by a
submerged weir. Critical flow solutions involving a single fluid layer have also been obtained,
using various types of shallow-water approximation, by Naghdi and Vongsarnpigoon [14] and
Sivakumaran, Tingsanchali and Hosking [15].

The occurrence of critical flow in a two-layer or even a multi-layer fluid system is a
problem of importance in meteorology and oceanography (see Melville and Helfrich [12]),
and has been considered in the context of one-dimensional hydraulic theory by Benton [4]
and Wood and Lai [18], for example. Armi [2] has investigated the flow of a system of two
fluids over bottom topography in a channel in which width variations may also occur, and the
hydraulics of exchange flows (which involve opposite flow directions in each fluid layer) in a
channel having both bottom and width variations is discussed by Armi and Farmer [3] and
Farmer and Armi [6].

In this paper, a numerical method is presented for obtaining critical flow in a two-layer
system, as the solution to the fully non-linear equations governing the behaviour of the two
ideal fluids of different densities. The method is based upon the use of a system of three
integrodifferential equations which are derived from the equations of ideal fluid flow
essentially in the plane of the physical variables. The free surface and the fluid interface are
treated using the arclength parametrization approach of Forbes [7] and [8], and the resulting
equations are discretized and solved by Newton's method. Detailed results of computation
are presented in Section 5.

2. The governing equations

We consider a system of two fluids flowing in an open channel, on the bottom of which is a
semi-circular obstruction of radius R. Far upstream of the semi-circle, the flow in each layer
is uniform, and the flow is everywhere subject to the downward acceleration g of gravity. We
shall refer to the upper layer as 'layer 1' and the lower layer of fluid as 'layer 2'; then far
upstream, layer 1 has uniform depth H1 and fluid speed c and layer 2 has depth H2 and
speed c2. It is a feature of critical flow that conditions in both fluid layers are asymptotically
uniform far upstream and far downstream, and that the upstream speeds cl and c2 are
unknown. If it is supposed that the uniform downstream flow speeds in layers 1 and 2 are
cV, and c2V2 respectively, then by conservation of mass in each layer, the corresponding
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uniform downstream fluid depths are HIV, and H2/V 2. The densities of layers 1 and 2 will be

denoted p and P2, respectively.
Non-dimensional variables are now introduced, by scaling all lengths relative to the

quantity H2 and all velocities relative to c2. In these new dimensionless variables, the lower
layer of fluid now has upstream speed and depth both equal to 1. A sketch of the flow in

these dimensionless coordinates is given in Fig. 1. With this choice of nondimensionalization,
we may define five dimensionless parameters, in terms of which solutions to this problem

may be characterized. These are written F2 = c2(gH2) - /2 which is the upstream Froude

number in layer 2, y = c/c 2 is a ratio of the upstream speeds in the two layers, A = H,IH2 is
the ratio of upstream depths, D = p,/p2 is the density ratio, and a = RIH2 is the dimension-
less radius of the semi-circle. However, the Froude number F2 in the lower layer and the
depth ratio A are both unknown and are therefore to be determined, as are the dimensionless

downstream speed coefficients V, and V2 defined above. Dimensional analysis indicates that

only three of the above parameters may be specified independently, and so we give the

quantities a, D and y, and determine the constants F2, A, V, and V2 as part of the solution.
For later use, we also define another upstream Froude number F = c,(gH) -1 12 in layer 1.

It can be computed from the other constants according to the formula F. = F2yA -1 2 .

The fluid in each layer is assumed to be inviscid and incompressible and to flow
irrotationally. Consequently, velocity potentials and streamfunctions fj may be defined,
where the subscript j refers to the j-th fluid layer, j = 1, 2. If the horizontal and vertical
components of the velocity vector are uj and vi in the j-th fluid layer, then

do, d qi

(2.1)

vj = - j=1,2.
dy dx j

The requirement that there be no flow normal to the bottom y = h(x) gives rise to the
condition

dh
V2U2d ony=h(x), (2.2a)
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Fi. L. Diagram of flow in dimensionless coordinates. This is a portion of an actual solution, computed with

a = 0.45, D = 0.6 and A = 1 (y = 1.454).
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where

lo[-r1, for xl-a for Ixi ; a. (2.2b)

If the free surface dividing the top layer of fluid (layer 1) from the air is written as y = T(x),
then along this surface, the Bernoulli equation

F2(ul + 2) + y = r2F2 + A + 1 ony = T(x) (2.3)

must hold, expressing the conservation of mechanical energy within fluid layer 1, and the fact
that the pressure on the surface equals atmospheric pressure. In addition, there is also a
kinematic requirement that no fluid particles cross the free surface, leading to the condition

dT
1 =u 1 - on y = T(x). (2.4)

At any point along the interface y = M(x) dividing the lower fluid from the upper, it is
required that the fluid pressures on each side of the interface be equal. With the aid of
Bernoulli's equation in each fluid layer, this requirement leads to the condition

DF2(u + Vl)-2F(u + 2) (D - 1)y = Dy2F-F + D -1 on y = M(x) .

(2.5)

In addition, there are two kinematic conditions to be satisfied along the interface y = M(x),
expressing the fact that particles from neither fluid layer are free to cross the interface. These
conditions are

dM
v = uj dx j=1,2, ony=M(x). (2.6)

Finally, it is necessary to impose explicit statements that the flow in each layer far upstream
and far downstream is uniform. It is sufficient to require that the conditions

ul-y, , o0, T- 1 + ,
(2.7)

u2 1 , v2 -0, M--> as x---oo

be obeyed far upstream, and that the flow far downstream be described by the conditions

1 A
u , ---> V , v , --> + 

~~~~~~~~1 ~(2.8)
u2 ---> V2 , v 2---> 0, M as Xe--> o.

The conditions (2.8), which are to be satisfied asymptotically far downstream, involve the
unknown dimensionless velocity coefficients V1 and V2 shown in Fig. 1. These are related to
the unknown Froude number F2 and depth ratio A through the conditions (2.3) and (2.5) at
the two free boundaries. Substituting the downstream values from (2.8) into equation (2.3)
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and solving for F2 gives one relationship between the unknown parameters in the form

F2 2(A + 1- A/V, - 1/V2) (2.9)

y 2 (V1 - 1)

Another relation comes from using the downstream conditions (2.8) in the interfacial
condition (2.5), and may be written

1 1 ,,2
D Dy 2F(V - 1)- F2(V2-1) + (D - 1) 1 = 0. (2.10)

The problem is thus completely defined by the conditions (2.1)-(2.10).

At this stage, it is convenient to introduce the complex variable z = x + iy. It is a

consequence of the Cauchy-Riemann equations (2.1) that complex velocity potentials

wj = nj + iij, = 1, 2 may be introduced, which are analytic functions of the spatial variable
z. Following Forbes and Schwartz [10], a new complex spatial variable = 6 + i is now

defined, such that the bottom maps to the straight line r7 = 0 in this new , ,7 coordinate
system. This transformation, although not strictly necessary, nevertheless enhances the

efficiency of the numerical solution to be described in Section 4. The required conformal
mapping is the familiar Joukowski transformation

= 2( z + . (2.11)

Equation (2.11) may be inverted to yield

z = + (A + iB), (2.12a)

in which

A + iB = [g2 - 2/2 (2.12b)

In these new coordinates, the bottom condition (2.2) becomes simply

b2 =0 on =0. (2.13)

In view of the fact that the complex velocity potentials wj = oj + ij, j = 1, 2 are analytic
functions of the variable = + i,, it is possible to derive integrodifferential equations
relating the real and imaginary parts of the functions dwj/dg, j = 1, 2, along the two free
boundaries of the fluids. This is done with the aid of Cauchy's integral formula in each fluid
layer. To begin, the free surface of the upper fluid (layer 1) is parametrized using an
arclength s,, and the interfacial surface between layers 1 and 2 is parametrized by arclength
s2. Thus, along each free boundary,

ds)2 (d ) =1, j=1,2. (2.14)
dsi dsi

The kinematic condition (2.4) on the free surface becomes
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ds,
d 1 = 0, (2.15)

and the two kinematic conditions (2.6) at the interface may be written

do
d =0 = 1,2, (2.16)
ds 2

reflecting the fact that each free boundary is a fluid streamline. The Bernoulli equation (2.3)
at the free surface of fluid layer 1 may be written in terms of the arclength s parametrizing
this surface, and in the new -77 coordinate system, transforms to

1 2 A 2 +B 2 d1 2

2 [( + A)2 + (r + B)2 1 dsl 71 

= y2 F2 + + 1, (2.17)

in which the functions A and B are defined by equation (2.12b). On the interface between
fluid layers 1 and 2, the dynamic condition (2.5) becomes

F2 [( + A )
2 + ( + B )

2] ds 2 d 2 ] - 1)( )

2r 2 2 2

= Dy2F - F 2 + D - 1. (2.18)

The integrodifferential equation relating the real and imaginary parts of the function
dw2/d ' in the lower fluid (layer 2) along the internal interface may now be derived with the
aid of Cauchy's integral formula. This development follows closely that given by Forbes and
Schwartz [10] and Forbes [7]. Fluid layer 2 is first extended by reflection about the horizontal
bottom = 0 to form an image layer 2 with an image free boundary, lying beneath the actual
river bed 77 = 0. Values of the dependent variable w2 () in this image fluid are related to
values in the actual layer 2 by means of the reflection condition

W2()= w2() (2.19)

which is a consequence of the bottom condition (2.13), and satisfies it identically. Here, the
bars denote complex conjugation.

Cauchy's integral formula is applied to the complex function

dw2
X2(;) d2 -2,

and may be written

r X s) =0, (2.20)

where the path F consists of the entire interfacial free surface with a semi-circular path of
vanishingly small radius excluding the point (s2 ), the entire image free surface, and vertical
lines : = + L, as L--> , connecting the two surfaces. The integration variable ; in equation



Two-layer critical flow 331

(2.20) represents any point on the contour r. In the limit L---> o, the contributions from the
two vertical lines become zero. If o2 is the value of arclength at some moveable point 8(o-2)
along the interfacial free surface, then the corresponding point on the image free surface is
(a 2), and equation (2.20) yields

. r X2( (2))002) + X2(W(O2))N'(2)
1TX2((S2))= -f x-%)- (52) d 2 + f (o2) - (2) o 2 (2.21)

The first integral in equation (2.21) is singular in the Cauchy principal-value sense as
'2 -s 2. It now remains to take the imaginary part of this equation, making use of the

reflection condition (2.19) to eliminate quantities at the image surface in favour of their
values at the true interfacial free surface, to give the desired integrodifferential equation in
the form

r[(s 2)'(S2) - 2]

= f [0;(o2) - 2'(or2)1[-(o-2) - (S2)] + 2'(o-2)[(2) - (S2)] d
[(o-2) - (s2)]2 + [(2) - (s2)] 2 2

+ [4;(2)- 2e'(-2)][n(o2) + () + + 2'(o-2)[(o2) - (S)] d 22
-+ 1 - j[+(oa(-2) - (s2)]2 + [2 (2.22)

in which the kinematic condition (2.16) has been employed (with j = 2). The derivation of a
similar equation for a fluid of infinite depth has been detailed by Forbes [7].

Essentially the same methods outlined above are used to derive integrodifferential
equations relating the real and imaginary parts of the function dw/d3 along the free
boundaries of fluid layer 1. Since there is both an upper free surface and a lower interfacial
free boundary to layer 1, there will be two such integrodifferential equations in this layer.
Each such equation involves values of the unknown functions on both free boundaries,
although the two equations are linearly dependent. Using the symbol o% to denote the value
of the arclength along the upper free surface at a moveable point (o-1), the two integrodif-
ferential equations in layer 1 may be derived in the form

7r[I(sj)'(sj) - 2 y]

=f [41(o2) - 2 Y'(o 2)][(o-2) - r(sj)] + 2y'(uo2)[(o 2) - (s)]

[= (o)- J(sj)l2 + [(o2) - (S)] d

f [0(o,1) - 2y'(oT1)][7(o1) - 77(sj)] + 2 y7'(ol)[(o-,) - (sj)]
+ [go do, j = 1,2.

J[(o ~)- -(sj)]2 + [(o1) - q(Sj)]2

(2.23)

The first integral in this equation is taken along the interfacial surface and is singular in the
Cauchy principal-value sense when j = 2, and the second integral is taken along the upper
free surface and is singular when j = 1.

The calculation of the shapes of the two free boundaries and the unknown constants F2

and A thus consists of finding a solution to the integrodifferential equations (2.22) and (2.23)
coupled with the dynamic conditions (2.17) and (2.18) and the relations (2.9) and (2.10).
These are subject to the additional requirements (2.14) for the two arclengths and the
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asymptotic conditions (2.7) and (2.8) appropriately transformed to the s-17 coordinate
system by means of the mapping (2.11).

3. Shallow-water approximation

Some insight into the nature of transcritical flow in the case of a two-layer system can be
gained by use of the shallow water, or long wave, approximation to the full system of
hydrodynamic equations. This has been done by Armi [2], Benton [4] and Wood and Lai
[18], for example, and for ease of reference we summarize the results here. In particular, it
will be seen that shallow-water theory leads to an approximate definition of critical flow for a
two-layer system (equation (3.7)), which is useful in discussing solutions to the fully
non-linear problem.

We return briefly to dimensional variables as described at the beginning of Section 2. In
the top layer of fluid, shallow-water theory yields the approximate mass- and momentum-
conservation equations in the form

ul (T- M) = cH,
(3.1)

tui + gT= 2c + g(H 1 + H 2 ),

and the same conservation laws in the bottom layer of fluid can be written

u 2(M - h)= c2H2,
(3.2)

2 + (1- D)gM + DgT= 2c 2 + (1- D)gH2 + Dg(H + H2),

where D is the ratio of the fluid density in the top layer 1 to the density in layer 2, as before.
It is convenient, as in Section 2, to define upstream Froude numbers in each layer. Thus,

far upstream in the top layer the flow is characterized by Froude number F, = c(gH,)- /2,
and in the bottom layer the Froude number far upstream is F2 = c2 (gH2 )- 1"2 . In addition, we
shall also define local Froude numbers

U1 U2

[g(T- M)]1 2 f2 = [g(M - h)]' 2 (33)

which vary at each section x along the channel, but approach the upstream Froude numbers
F, and F2 as x--- -c0. The use of the mass-conservation equations in each fluid layer (the first
equation in each of (3.1) and (3.2)) enables the horizontal velocity components u, and u2 to
be written

Uj = [cjHjgf2]1/ 3 , j = 1, 2, (3.4a)

and the elevations T(x) and M(x) of the surface and interface to be expressed as

M(x) = h(x) + [ f 2 1 (x= M(x) + [ f2 (3.4b)
f~~~~~~~~~~g ~ ~ ~ 



Two-layer critical flow 333

The results derived in equations (3.4) are now substituted into the momentum-conservation
equations (the second equation in each of (3.1) and (3.2)), to yield the system

1 h/H1 1 1 +i
1 f + ,2+ + 1 4/3 + l/A
2 AF 1'3 (yAf 2)

2 13 / 2 3
2 F 3

(3.5)
1 hH 231 + /Ay 1 3 

2 3 1 + DA
2 f2 + + 2/3 2 F2 -

--2 J2 s2

in which the upstream speed ratio y and depth ratio A are as defined in Section 2.
Following Armi [2], the governing equations (3.5) are written in differentiated form

according to the matrix equation

f'/
3

(l -f[
2
) -(yA)-

21 3
f/3[ /X h'(x) 3[ lD(y)

23
f

5 13 f 3 (_ f2 -2) df, dx -h(x) 3(2AF ), 1 (3.6)_D( ,A)2/3f~-5 3 f},3(lf22 )L 2/x- H2 3(2F32 ) 3.

Critical flow occurs when the bottom is horizontal, h'(x)=O 0, but at a section x where the
matrix equation (3.6) does not possess a trivial solution. This can only occur when the
determinant of the coefficient matrix in equation (3.6) is zero, giving rise to the 'critical'
condition

f2 =f2 +f2 -f2f2 + D = 1,
ff 2 1 2+D ff: + l (3.7)

which must be satisfied at the crest of the submerged obstacle responsible for the flow.
Equation (3.7) shows that fc is the appropriate combination Froude number for two-layer
flows. As suggested by Armi [2], this Froude number fc is expected to be greater than one
far upstream, to pass through the critical value 1 at the crest of the weir, and then to fall
below one far downstream, although the individual Froude numbers f, and f2 in each fluid
layer may always exceed unity, in this approximation.

4. The numerical solution

The numerical method used for the approximate solution of the equations of motion derived
in Section 2 is based on that presented by Forbes and Schwartz [10] and extended to a more
general class of problems by Forbes [7]. It is therefore only necessary to present a brief
overview of this technique here.

Each free boundary is represented as a discrete set of grid points in some appropriate
'window' of finite width including the semi-circular weir. The points are chosen to be equally
spaced with respect to the arclength along each surface, so that the top free surface is
represented by the set {s ')}, k = 1, 2,.... ,N with constant point spacing h1, and the
interfacial free surface is represented by points {s(2)}, k = 1,2,..., M having constant
spacing h2.

Newton's method is used to solve for a vector of unknowns of length N + M - 1, made up
from the derivatives -1'(sM1 )), k = 2, . . ., N and r'(s(2)), k = 2,.... ,M and the depth ratio A.
These derivatives correspond approximately to the slopes of each free boundary (in the -/
coordinate system) measured at the numerical grid points. To begin the Newtonian iteration,
an initial guess is made for these unknown derivatives and for A; in the absence of a better
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guess supplied by some previously computed non-linear solution, we follow the suggestion of
Forbes [9] and use

(S2) 1 -lv'2) eS2/2 [ 1-V 2 A(1- VI) e s ,/2 (4.1)
(s2) 2V2 1 + e s2' 2 V2 2V, 1 + ' (4.1)

which are consistent with the upstream and downstream conditions (2.7) and (2.8).
However, the true values of the constants V, and V2 are as yet unknown, and so approximate
values of about 1.5 are assumed. For the unknown depth ratio A, an initial guess of about 0.5
is usually adequate.

Once an initial guess has been made for the derivatives in equation (4.1) and for A, the
computation of all other quantities at the two free boundaries is possible, based on this
guess. The process begins by supplying values of the dependent variables at the two points
furthest upstream on each surface, in accordance with the upstream conditions (2.7) and
(2.8). Thus we take

7'(s(i)) = '(s ) = , =(s j( >) =S ), j =1, 2,
(4.2a)

n(S)) = (1 + A), (s(2)) = l

and

,(s~)) = 2ye(s(J)), j = 1, 2,
(4.2b)

(2)12) (S2) )= 2 2(s 2)) = 2(2)).

The surface elevations are next obtained for both free boundaries using the trapezoidal
rule to integrate the functions ,7', with initial values supplied by (4.2a). Numerical values for
the derivatives ' at the grid points along each surface may be computed immediately from
equation (2.14), and these are likewise integrated using the trapezoidal rule to give
approximate values of the functions (s/), j = 1, 2.

The downstream conditions (2.8) are transformed into the , 77 coordinate system and
satisfied in part by requiring

1 AV2
V2 2)), V = 2V_ 1 ' (4.3)271(s5) 12V(s)) 

from which the unknown downstream speed coefficients V and V2 are computed. The
Froude number F2 in layer 2 is now obtained from equation (2.9).

The dynamic condition (2.17) at the upper free surface is solved to yield the quantities
4'(s?()), k = 1, 2, ... , N. These are integrated numerically using the trapezoidal rule, to
provide an approximation to the function t4 at the upper surface, assuming an initial value
given by equation (4.2b). This now completely determines the velocity potential 4l in the
upper layer of fluid, along the upper free surface. In order to obtain this velocity potential
along the interfacial free surface, the integrodifferential equation (2.23) is used with = 2.
The integrals in this equation are truncated upstream and downstream, so that attention is
restricted to the finite intervals on each free boundary under consideration. Care must be
taken, however, to estimate the portions of the integrals ignored in this truncation process,
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otherwise unacceptably large numerical error may result. We assume that the flow outside
the truncation 'window' is approximately uniform, so that the upstream and downstream
portions of the integrals in (2.23) can be estimated using conditions (2.7) and (2.8). The
integrodifferential equation is now evaluated at the half-points s (2), k = 2, . . ., M, and the
integrals are discretized using the trapezoidal rule and a result due to Monacella [13] that
allows the Cauchy singularity in the integrand simply to be ignored. Values of 5 and r7 at the
half-mesh points are expressed as the averages of values at the two neighbouring points. In
view of equation (4.2b), the integrodifferential equation is thus replaced by a linear algebraic
system of equations for the derivatives 0'(s(2 )), k=2, . . . , M, which is solved (at each
iteration of Newton's method) by Gaussian elimination. The function , at the interfacial
free surface is then obtained by trapezoidal rule integration, using equation (4.2b) to supply
the starting value at the first point upstream. Finally, the velocity potential 2 in the lower
layer of fluid is evaluated at the interface by solving equation (2.18) for the derivatives

'2(s(2), k = 1, 2, . ., M, and integrating these quantities using the trapezoidal rule and the
upstream value taken from equation (4.2b).

The initial estimates for the derivatives of the surface height l at each free boundary and
the depth ratio A are improved iteratively, using Newton's method. When the integrodif-
ferential equation (2.22) is truncated and discretized in the manner described above, it yields
a system of M- 1 non-linear, algebraic equations. A further N - 1 non-linear equations
come from the integrodifferential equation (2.23) at the top free surface (j = 1), after it has
been similarly truncated and discretized. Equation (2.10) provides the final algebraic
equation needed to close the system. The damped Newton's method detailed by Forbes and
Schwartz [10] and Forbes [7] is then used to complete the numerical solution.

5. Presentation of results

In this section, the results of rather extensive computation are presented and analyzed.
About 130 separate converged numerical solutions have been obtained, typically with 101
numerical grid points on each free boundary. This is usually sufficient to guarantee about
three figures accuracy. All computer programs were run on the PYRAMID 9810 mini-computer
in the Mathematics Department at the University of Queensland, and in general, five
iterations of Newton's method and about ninety minutes of computer time were required to
produce each solution. As outlined in Sections 2 and 4, the approach adopted was to specify
the speed ratio y and allow the upstream depth ratio A to be obtained as part of the solution.
This is equivalent to specifying the volume flow rates in each fluid layer, and allowing
upstream conditions to be determined. In an alternative procedure, we have also developed
a method in which the upstream depth ratio A is assumed known and the speed ratio y found
numerically; although simpler to implement, this approach appears to yield results in a less
convenient format, and accordingly, results obtained in this fashion will not be discussed
further. However, the surface profiles in Fig. 1 were obtained by this method.

In Fig. 2, we present surface profiles obtained with D = 1 and y = 1, for the two different
values a = 0.25 and a = 0.475 of the dimensionless semi-circle radius. In this case, both the
densities and the upstream fluid speeds are the same in each fluid layer, so that the system is
indistinguishable from a single fluid layer of height 1 + A flowing over a weir. This affords a
valuable opportunity for comparison with the results of Forbes [9] for trans-critical flow in a
single layer, and we find that the two sets of calculations are in agreement to at least three
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Fig. 2. Surface elevations for the case D = 1, y = 1 and the two values of the semi-circle radius a = 0.25 and
a = 0.475.

significant figures, when allowance is made for the fact that the effective upstream depth in

the present problem is 1 + A. There is thus good reason for confidence in the correctness of

the present numerical solution, in particular since Forbes [9] showed that the single-layer

calculations were well confirmed by experiment.
Some remarks on the effects of numerical error in the solution profiles shown in Fig. 2 are

appropriate. We have verified that the solutions are independent of the numerical point

spacings h, and h2 , by varying these intervals and observing that the solutions are unaffected

to at least graphical precision. There is, however, a small error caused by the truncation of

the domains of the integrodifferential equations (2.22) and (2.23) to the numerical 'window'
described in Section 4. The upstream truncation results in the generation of numerical

wavelets of very small amplitude ahead of the weir; such non-physical waves are present in

the upstream portions of Fig. 2, but may be too small to be visible. They have no discernible

effect upon the rest of the solution, and as they are discussed in detail by Forbes and

Schwartz [10], they will not be considered further here. The downstream truncation of the
integrodifferential equations has a very small effect upon the last few downstream grid

points, resulting in a slight upward inflexion of the surface there. This effect is also present in

Fig. 2, but may again be too small to be seen.
Figure 3 shows how the upstream Froude numbers F and F2 in layers 1 and 2,

respectively, vary with the semi-circle radius a, for the same case D = 1, y = 1 discussed in
Fig. 2. In addition, we have also plotted the upstream combination Froude number Fc for

the two-fluid system, which is obtained from equation (3.7) as

F c = F1 + F2 - F2F2 + D . (5.1)

For small a, the predictions of shallow-water theory are confirmed. The combination Froude
number Fc far upstream exceeds unity, as in fact do both the individual Froude numbers F

and F2 in each fluid layer. The combination Froude number passes through the critical value
on some curve in the vicinity of the weir, and becomes subcritical (fc < 1) far downstream.
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Fig. 3. The upstream Froude numbers F. and F2 in the top and bottom layers and the upstream combination Froude
number F, as functions of semi-circle radius a, for D = 1 and = 1.

As the semi-circle radius a is increased, however, the simple shallow-water theory becomes
less reliable, since in particular, the quantity f far downstream eventually becomes negative
for sufficiently large a, as revealed by our numerical algorithm, showing that the combina-
tion Froude number defined in equation (3.7) is no longer adequate to describe the whole
flow. In addition, the upstream Froude numbers F, and F2 in each layer can fall below one,
although these Froude numbers both exceed one far downstream. Thus, in addition to the
overall flow being transcritical in the sense that the combination Froude number fc passes
through the critical value (as in equation (3.7)), transcritical flow may also be occurring in
either or both of the separate fluid layers. The numerical scheme fails to yield a solution for
a > 0.475, since the downstream portions of the flow become very fast and shallow for such
large disturbance sizes, giving rise in effect to a downstream flow which is numerically and
physically unstable.

Surface profiles are shown for the case D = 0.6, y = 1 in Fig. 4, for two different values of
the semi-circle radius, a = 0.2 and a = 0.425. There is little qualitative difference between
the surface profiles in this case and those obtained with D = 1 shown in Fig. 2, and the same
remarks concerning the numerical accuracy and the effects of truncation apply here also.
Again it is found that the numerical method does not converge for values of a larger than
0.425, since the downstream portion of the top layer of fluid, in particular, has become very
shallow and flows very rapidly, giving rise to a flow which is effectively unstable both
numerically and physically.

Figure 5 details the behaviour of the upstream Froude numbers F and F2 in each fluid
layer as the semi-circle radius a is increased, for the case D = 0.6, y = 1 considered in Fig. 4.
In addition, the upstream combination Froude number Fc defined in equation (5.1) is also
shown for this case. The qualitative behaviour is very similar to that shown in Fig. 3 for
D = 1, except that the curves for F. and F2 in this case are more nearly monotonic, and less
undulatory. As described previously, the predictions of shallow-water theory are confirmed
for small a, but as a increases, this approximate theory is no longer adequate to describe the
overall flow.

The variation of the upstream combination Froude number F with circle radius a is
shown in Fig. 6, for the three different values D = 0.3, D = 0.6 and D = 1 of the density
ratio. In each case, Fc - 1 as a - 0, which is to be expected on the basis of shallow-water
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Fig. 4. Surface elevations for the case
a = 0.425.

D = 0.6, y = 1 and the two values of the semi-circle radius a = 0.2 and

theory, since the requirement of critical flow at the obstruction (see equation (3.7)) implies
that the uniform flow conditions which must exist as a ---> 0 necessarily occur at the critical
value of the combination Froude number. As a is increased, we find that the Froude number
Fc first increases to a maximum and then decreases until the point where the numerical
scheme fails to converge, for every non-zero value of the density ratio D.

A more detailed study of the influence of the density ratio D upon the solutions is
summarized in Fig. 7. Here, the upstream Froude numbers F, and F2 in each fluid layer and
the upstream combination Froude number Fc are plotted against the density ratio D, for the
case in which the semi-circle radius and the upstream speed ratio are held fixed at the values
a =0.2 and y = 1, respectively. For D > 1, we are apparently unable to find a stable
solution, which is to be expected since the upper fluid would then be heavier than the lower
one. The curves in Fig. 7 were sketched by obtaining a solution for D = 1, and then using

0.5
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0.1

0.5 1.0 1.5

Fig. 5. The upstream Froude numbers F, and F2 in the top and bottom layers and the upstream combination Froude
number Fc, as functions of semi-circle radius a, for D = 0.6 and y = 1.
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Fig. 6. The upstream combination Froude number Fc as a function of semi-circle radius a, for the three values of
the density ratio D = 0.3, D = 0.6, and D = 1. The upstream speed ratio is y = 1.

this as the initial guess for a solution at a slightly smaller values of D, and proceeding
incrementally in this way until a solution was eventually obtained with D = 0. Clearly each of
the upstream Froude numbers shown in Fig. 7 decreases monotonically as D is reduced from
its maximum value 1 to its minimum 0.

An interesting situation arises when D = 0, which may be considered as a singular or
degenerate value of the density ratio D. In this singular case, the upper fluid effectively has
zero weight relative to the fluid in the lower layer, and so the lower fluid behaves
independently of the upper one. This is reflected by the equations governing the behaviour
of the fluid in each layer, which de-couple at the value D = 0. In the above discussion of the
results presented in Fig. 7, it was explained that a solution was obtained at D = 0 as the
numerical limit of the branch of solutions which exist for non-zero D. It turns out that a
different solution may be obtained for D = 0 at the same values of the other parameters a
and y, simply by altering the initial guess supplied to the Newtonian iteration scheme
described in Section 4, and we have used equation (4.1) for this purpose.

Figure 8 shows the two different solutions computed in this way for the singular case
D = 0, with semi-circle radius a = 0.2 and upstream speed ratio y = 1. For each of the two

D

0.5 1.0 1.5

Fig. 7. The upstream Froude numbers F. and F2 in the top and bottom layers and the upstream combination Froude
number F,, as functions of the density ratio D, for a = 0.2 and y = 1.
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Fig. 8. Surface elevations for two different solution types at the same values of a = 0.2 and y = 1, for the singular
case D = 0. The surfaces for one of the solution types are sketched with a dashed line, and the other solution type is
indicated by a solid line. The interfacial free surface is the same for both solution types.

different solution types, the interface between layer 1 and layer 2 has exactly the same
location, which is to be expected as the fluid in the lower layer is unaffected by the presence

of the upper fluid. In fact, the lower fluid flows as an independent single-layer system, and as
such may be compared with the results of Forbes [9], with which it is in good agreement. In

the upper layer of fluid, however, there is evidently a lack of uniqueness associated with the

upstream depth ratio A, so that the upper fluid can flow at two different depths, when the
speed ratio y is fixed.

6. Discussion and conclusions

Steady flow of a system of two ideal fluids over a semi-circular weir has been investigated,

using a numerical scheme capable of solving the fully non-linear two-dimensional equations

of motion. The flow is of the trans-critical type, by which it is meant that the combination
Froude number for the two-fluid system passes through the critical value 1 near the weir.

The solution consists of a wave-free region of uniform flow both upstream and downstream

of the semi-circular obstruction; these two regions are of different depths, and so are
connected by a waterfall-like flow over the obstacle.

Solutions have been found for values of the ratio D of the fluid density in the upper layer

to that in the lower layer in the interval 0 D - 1. When D > 1, stable solutions are

apparently not possible, since the upper fluid would then be heavier than the lower fluid,

precluding a steady solution. When D = 1 and the upstream speed ratio y is also 1, the

system is indistinguishable from a single-layer flow over a weir, and so can be compared with

the theoretical and experimental results of Forbes [9], with which it is in agreement. As D

decreases toward zero, the solution properties change smoothly, and at the value D = 0, the
lower layer of fluid behaves as a single fluid system, since it is unaffected by the presence of

the upper layer. Thus the properties of the fluid in the lower layer may again be compared
with the results of Forbes [9], and agreement is found to be good.

- - - - - -
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At the singular value D = 0, the fluid in each layer behaves independently of the other.

Although the bottom layer of fluid is forced to flow as a single fluid system with properties
described by Forbes [9], the upper layer of fluid is evidently capable of two different flow
behaviour types. For one of these solution types, it happens that the Froude number fi in the
upper layer is always greater than 1, increasing steadily from its supercritical upstream value
F1 to a larger supercritical downstream value. For the other solution type, the upstream
Froude number F, in the top fluid layer is subcritical (F1 < 1), the flow passes through the
critical value f, = 1 at some point upstream of the weir and then becomes supercritical far
downstream. We have attempted to continue this second solution type at D = 0 into the
D > 0 portion of the parameter space, but find that the numerical method is only capable of
obtaining such solutions in a very small interval near D = 0, for a reason which is presently
not understood. However, it is clear that the singular value D = 0 is associated with a lack of
uniqueness. Indeed, there may exist other solutions in a neighbourhood of D = 0, although
our numerical scheme has so far only detected the two types discussed above.

As stated in the introduction, there are many different possible solution branches in the
case of flow of a single layer of fluid over a weir, of which the trans-critical solution type is
only one possible outcome. Other solution types may involve downstream waves, or a
symmetric upstream and downstream region free of waves, as discussed by Forbes and
Schwartz [10] and Vanden-Broeck [16]. Surely the same complexity of solution branches
must also exist in the case of a two-fluid system, so that solutions with downstream waves on
both free surfaces must be considered a possibility, for example. In addition, extra
complexity may exist for a two-fluid system, for which there is no equivalent in the
single-fluid case. For example, the lower fluid could flow trans-critically while the upper fluid
possessed downstream waves, and so on. Clearly a comprehensive study of all these
possibilities lies well outside the scope of the present investigation, and awaits future
elucidation.
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